Anexo:Estados de oxidación de los elementos

Esa es una lista de los elementos químicos, excluyendo aquellos valores no enteros. Los estados más comunes aparecen en negrita. La tabla está basada en una realizada por Greenwood and Earnhshaw con notas añadidas. El estado de oxidación 0, que ocurre para todos los elementos, viene implícito en la columna con el símbolo de cada elemento. El formato de la tabla, que viene basado en la de Mendeleiev de 1889, muestra la periodicidad de los estados de oxidación de los elementos.


Elemento Estados
negativos de
oxidación
        Cero     Estados
positivos de
oxidación
Notas
  −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8
Hidrógeno −1 H +1
Helio He
Litio Li +1
Berilio Be +2 [1]
Boro B +1 +2 +3
Carbono −4 −2 C +2 +4
Nitrógeno −3 −2 −1 N +1 +2 +3 +4 +5
Oxígeno −2 −1 O +1 +2
Flúor −1 F
Neón Ne
Sodio −1 Na +1
Magnesio Mg +1 +2 [2]
Aluminio Al +1 +3
Silicio −4 −3 −2 −1 Si +1 +2 +3 +4
Fósforo −3 −2 −1 P +3 +4 +5
Azufre −2 −1 S +1 +2 +3 +4 +5 +6
Cloro −1 Cl +1 +2 +3 +4 +5 +6 +7
Argón Ar
Potasio −1 K +1
Calcio Ca +1 +2 [3]
Escandio Sc +1 +2 +3
Titanio −1 Ti +2 +3 +4
Vanadio −1 V +1 +2 +3 +4 +5
Cromo −2 −1 Cr +1 +2 +3 +4 +5 +6
Manganeso −3 −2 −1 Mn +1 +2 +3 +4 +5 +6 +7
Hierro −2 −1 Fe +1 +2 +3 +4 +5 +6 +7 +8 [4][5]
Cobalto −1 Co +1 +2 +3 +4 +5
Níquel −1 Ni +1 +2 +3 +4
Cobre Cu +1 +2
Zinc Zn +1 +2 [6]
Galio Ga +1 +2 +3
Germanio −4 Ge +1 +2 +3 +4
Arsénico −3 As +2 +3 +5
Selenio −2 Se +1 +2 +4 +6 [7]
Bromo −1 Br +1 +3 +4 +5 +7
Kriptón Kr +2
Rubidio −1 Rb +1
Estroncio Sr +1 +2 [8]
Itrio Y +1 +2 +3 [9][10]
Zirconio Zr +1 +2 +3 +4
Niobio −1 Nb +2 +3 +4 +5
Molibdeno −2 −1 Mo +1 +2 +3 +4 +5 +6
Tecnecio −3 −1 Tc +1 +2 +3 +4 +5 +6 +7
Rutenio −2 Ru +1 +2 +3 +4 +5 +6 +7 +8
Rodio −1 Rh +1 +2 +3 +4 +5 +6
Paladio Pd +2 +4
Plata Ag +1 +2 +3 +4 [11]
Cadmio Cd +1 +2 [12]
Indio In +1 +2 +3
Estaño −4 Sn +2 +4
Antimonio −3 Sb +3 +5
Telurio −2 Te +2 +4 +5 +6
Yodo −1 I +1 +3 +5 +7
Xenón Xe +2 +4 +6 +8
Cesio −1 Cs +1
Bario Ba +2
Lantano La +2 +3
Cerio Ce +2 +3 +4
Praseodimio Pr +2 +3 +4
Neodimio Nd +2 +3
Prometio Pm +3
Samario Sm +2 +3
Europio Eu +2 +3
Gadolinio Gd +1 +2 +3
Terbio Tb +1 +3 +4
Disprosio Dy +2 +3
Holmio Ho +3
Erbio Er +3
Tulio Tm +2 +3
Yterbio Yb +2 +3
Lutecio Lu +3
Hafnio Hf +2 +3 +4
Tántalo −1 Ta +2 +3 +4 +5
Tungsteno o wolframio −2 −1 W +1 +2 +3 +4 +5 +6
Renio −3 −1 Re +1 +2 +3 +4 +5 +6 +7
Osmio −2 Os +1 +2 +3 +4 +5 +6 +7 +8
Iridio −3 −1 Ir +1 +2 +3 +4 +5 +6 +7 +8 [13]
Platino Pt +2 +4 +5 +6
Oro −1 Au +1 +2 +3 +5
Mercurio Hg +1 +2 +4 [14]
Talio Tl +1 +3
Plomo −4 Pb +2 +4
Bismuto −3 Bi +3 +5
Polonio −2 Po +2 +4 +6
Astato −1 At +1 +3 +5 +7
Radón Rn +2 +4 +6 [15][16]
Francio Fr +1
Radio Ra +2
Actinio Ac +2 +3 [17]
Torio Th +2 +3 +4
Protactinio Pa +2 +3 +4 +5 [18]
Uranio U +2 +3 +4 +5 +6 [19]
Neptunio Np +3 +4 +5 +6 +7
Plutonio Pu +3 +4 +5 +6 +7 +8 [20]
Americio Am +2 +3 +4 +5 +6
Curio Cm +3 +4
Berkelio Bk +3 +4
Californio Cf +2 +3 +4
Einsteinio Es +2 +3
Fermio Fm +2 +3
Mendelevio Md +2 +3
Nobelio No +2 +3
Lawrencio Lr +3
Rutherfordio Rf +4
Dubnio Db +5 [21]
Seaborgio Sg +6 [22]
Bohrio Bh +7 [23]
Hassio Hs +8 [24]

Una figura con un formato similar que la mostrada debajo fue usada por Irving Langmuir en 1919 para demostrar la regla del octeto.[25]​ La periodicidad de los estados de oxidación fue uno de las claves que evidenciaban la regla de Langmuir.

Referencias y notas

editar
  1. Be(I) has been observed in beryllium monohydride (BeH); see «Beryllium: Beryllium(I) Hydride compound data». bernath.rafael es looko.ca. Consultado el 10 de diciembre de 2007. 
  2. Low valent magnesium compounds with Mg(I) have been obtained using bulky ligands; see Green, S. P.; Jones C.; Stasch A. (diciembre de 2007). «Stable Magnesium(I) Compounds with Mg-Mg Bonds». Science 318 (5857): 1754-1757. Bibcode:2007Sci...318.1754G. PMID 17991827. doi:10.1126/science.1150856. 
  3. Ca(I) has been observed; see Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). «Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes». Journal of the American Chemical Society 132 (35): 12492-501. PMID 20718434. doi:10.1021/ja105534w. 
  4. Fe(VII) and Fe(VIII) have been observed; see Yurii D. Perfiliev; Virender K. Sharma (2008). «Higher Oxidation States of Iron in Solid State: Synthesis and Their Mössbauer Characterization - Ferrates - ACS Symposium Series (ACS Publications)». Platinum Metals Review 48 (4): 157. doi:10.1595/147106704X10801. 
  5. Fe(VIII) has been observed in iron tetroxide (FeO4); see Kiselev, Yu. M.; Nikonov, M. V.; Tananaev, I. G.; Myasoedov, B. F. (2009). «On the Existence of Plutonium Tetroxide». Doklady Akademii Nauk (Pleiades Publishing, Ltd.) 425 (5): 634-637. ISSN 0012-5016. doi:10.1134/S0012501609040022. Consultado el 25 de febrero de 2012. 
  6. Zn(I) has been observed in Zn2Cl2; see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). «Zink». Lehrbuch der Anorganischen Chemie (en alemán) (91–100 edición). Walter de Gruyter. pp. 1034-1041. ISBN 3-11-007511-3. 
  7. Se(I) has been observed in selenium(I) chloride (Se2Cl2); see «Selenium : Selenium(I) chloride compound data». WebElements.com. Consultado el 10 de diciembre de 2007. 
  8. Sr(I) has been observed in strontium monofluoride (SrF); see P. Colarusso et al. (1996). «High-Resolution Infrared Emission Spectrum of Strontium Monofluoride». J. Molecular Spectroscopy 175: 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019. 
  9. Y(I) has been observed in yttrium(I) bromide (YBr); see «Yttrium: yttrium(I) bromide compound data». OpenMOPAC.net. Consultado el 10 de diciembre de 2007. 
  10. Y(II) has been observed in yttrium(II) hydride (YH2); see «Yttrium: yttrium(II) hydride compound data». WebElements.com. Consultado el 10 de diciembre de 2007. 
  11. Ag(IV) has been observed in potassium hexafluoroargentate (K2AgF6) and caesium hexafluoroargentate (Cs2AgF6); see Riedel, Sebastian; Kaupp, Martin (2009). «The highest oxidation states of the transition metal elements». Coordination Chemistry Reviews (Elsevier) 253: 606-624. 
  12. Cd(I) has been observed in cadmium(I) tetrachloroaluminate (Cd2(AlCl4)2); see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). «Cadmium». Lehrbuch der Anorganischen Chemie (en alemán) (91–100 edición). Walter de Gruyter. pp. 1056-1057. ISBN 3-11-007511-3. 
  13. Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian (2009). «Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII». Angewandte Chemie International Edition 48 (42): 7879. doi:10.1002/anie.200902733. 
  14. Hg(IV) has been observed in mercury(IV) fluoride (HgF4); see Xuefang Wang; Lester Andrews; Sebastian Riedel; Martin Kaupp (2007). «Mercury Is a Transition Metal: The First Experimental Evidence for HgF4». Angew. Chem. Int. Ed. 46 (44): 8371-8375. PMID 17899620. doi:10.1002/anie.200703710. .
  15. Rn(II) has been observed in radon difluoride (RnF2); see Stein, L. (1970). «Ionic Radon Solution». Science 168 (3929): 362-4. Bibcode:1970Sci...168..362S. PMID 17809133. doi:10.1126/science.168.3929.362.  and Kenneth S. Pitzer (1975). «Fluorides of radon and element 118». J. Chem. Soc., Chem. Commun., (18): 760b - 761. doi:10.1039/C3975000760b. 
  16. «Advances in Inorganic Chemistry, Volume 46». 
  17. Ac(II) is known in actinium dihydride (AcH2); see Farr, J (1961). «The crystal structure of actinium metal and actinium hydride». Journal of Inorganic and Nuclear Chemistry 18: 42. doi:10.1016/0022-1902(61)80369-2. 
  18. Pa(II) is known in protactinium(II) oxide (PaO); see Sellers, Philip A.; Fried, Sherman; Elson, Robert E.; Zachariasen, W. H. (1954). «The Preparation of Some Protactinium Compounds and the Metal». Journal of the American Chemical Society 76 (23): 5935. doi:10.1021/ja01652a011. 
  19. Uranium exists in the +2 oxidation state in uranium monoxide (UO), uranium monosulfide (US), uranium acetylide (UC2), and uranium sesquicarbide (U2C3); see A.L. Bowman, G.P. Arnold, W.G. Witteman, T.C. Wallace and N.G. Nereson, Acta Crystallographica, 1966, 21, 670-671.
  20. Unstable Pu(VIII) complexes can form in alkaline solutions; see Kiselev, Yu. M.; Nikonov, M. V.; Tananaev, I. G.; Myasoedov, B. F. (2009). «On the Existence of Plutonium Tetroxide». Doklady Akademii Nauk (Pleiades Publishing, Ltd.) 425 (5): 634-637. ISSN 0012-5016. doi:10.1134/S0012501609040022. Consultado el 25 de febrero de 2012. 
  21. Db(V) has been observed in dubnium pentachloride (DbCl5); see H. W. Gäggeler (2007). «Gas Phase Chemistry of Superheavy Elements». Paul Scherrer Institute. pp. 26-28. 
  22. Sg(VI) has been observed in seaborgium oxide hydroxide (SgO2(OH)2); see Huebener et al.; Taut, S.; Vahle, A.; Dressler, R.; Eichler, B.; Gäggeler, H. W.; Jost, D.T.; Piguet, D. et al. (2001). «Physico-chemical characterization of seaborgium as oxide hydroxide». Radiochim. Acta 89 (11–12_2001): 737-741. doi:10.1524/ract.2001.89.11-12.737. 
  23. Bh(VII) has been observed in bohrium oxychloride (BhO3Cl); see "Gas chemical investigation of bohrium (Bh, element 107)", Eichler et al., GSI Annual Report 2000. Retrieved on 2008-02-29
  24. Hs(VIII) has been observed in hassium tetroxide (HsO4); see «Chemistry of Hassium» (PDF). Gesellschaft für Schwerionenforschung mbH. 2002. Consultado el 31 de enero de 2007. 
  25. Langmuir, Irving (1919). «The arrangement of electrons in atoms and molecules». J. Am. Chem. Soc. 41 (6): 868-934. doi:10.1021/ja02227a002.