Archivo:Drum vibration mode13.gif

Drum_vibration_mode13.gif (250 × 130 píxeles; tamaño de archivo: 137 kB; tipo MIME: image/gif, bucleado, 19 frames, 1,9s)

Descripción Illustration of vibrations of a drum.
Fecha (UTC)
Fuente self-made with MATLAB
Autor Oleg Alexandrov
Otras versiones

Obras derivadas de ésta:

 
Este diagrama fue creado con MATLAB.
Public domain Yo, el titular de los derechos de autor de esta obra, lo libero al dominio público. Esto aplica en todo el mundo.
En algunos países esto puede no ser legalmente factible; si ello ocurriese:
Concedo a cualquier persona el derecho de usar este trabajo para cualquier propósito, sin ningún tipo de condición al menos que éstas sean requeridas por la ley.

Source code (MATLAB)

function main()

   k = 1; % k-th asimuthal number and bessel function
   p = 3; % p-th bessel root

   q=find_pth_bessel_root(k, p); 

   N=20; % used for plotting

   % Get a grid
   R1=linspace(0.0, 1.0, N); 
   Theta1=linspace(0.0, 2*pi, N);
   [R, Theta]=meshgrid(R1, Theta1);
   X=R.*cos(Theta);
   Y=R.*sin(Theta);

   T=linspace(0.0, 2*pi/q, N); T=T(1:(N-1));

   for iter=1:length(T);
      
      t = T(iter);
      Z=sin(q*t)*besselj(k, q*R).*cos(k*Theta);

      figure(1); clf; 
      surf(X, Y, Z);
      caxis([-1, 1]);
      shading faceted;
      colormap autumn;

      % viewing angle
      view(108, 42);
      
      axis([-1, 1, -1, 1, -1, 1]);
      axis off;

      file=sprintf('Frame_mode%d%d_%d.png', k, p, 1000+iter);
      disp(sprintf('Saving to %s', file));
      print('-dpng',  '-zbuffer',  '-r100', file);

      pause(0.1);
   end

% converted to gif with the command 
% convert -antialias -loop 10000 -delay 10  -scale 50% Frame_mode13* Drum_vibration_mode13.gif
 
   

function r = find_pth_bessel_root(k, p)

   % a dummy way of finding the root, just get a small interval where the root is
   
   X=0.5:0.5:(10*p+1); Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, p);

   X=a:0.01:b; Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, 1);

   X=a:0.0001:b; Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, 1);

   r=(a+b)/2;
   
function [a, b] = find_nthroot(X, Y, n)

   l=0;

   m=length(X);
   for i=1:(m-1)
      if ( Y(i) >= 0  & Y(i+1) <= 0 ) | ( Y(i) <= 0  & Y(i+1) >= 0 )
	 l=l+1;
      end

      if l==n
	 a=X(i); b=X(i+1);

	 %disp(sprintf('Error in finding the root %0.9g', b-a));
	 return;
      end
   end

   disp('Root not found!');

Leyendas

Añade una explicación corta acerca de lo que representa este archivo

Elementos representados en este archivo

representa a

Historial del archivo

Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.

Fecha y horaMiniaturaDimensionesUsuarioComentario
actual21:00 8 jun 2008Miniatura de la versión del 21:00 8 jun 2008250 × 130 (137 kB)Oleg Alexandrov{{Information |Description={{en|1=x}} |Source=Own work by uploader |Author=Oleg Alexandrov |Date=x |Permission=x |other_versions=x }} x {{ImageUpload|full}}

Uso global del archivo