Archivo:Pm1234 Euler.svg

Ver la imagen en su resolución original ((Imagen SVG, nominalmente 240 × 390 pixels, tamaño de archivo: 26 kB))

Resumen

Descripción
English: Euler summation of 1 − 2 + 3 − 4 + · · · to 1/2-1/4.

The original series 1 − 2 + 3 − 4 + · · · is depicted at the top of the diagram; the Euler transformed series 1/2 − 1/4 + 0 + 0 + · · · is depicted at the bottom of the diagram. The conclusion is that the Euler sum of 1 − 2 + 3 − 4 + · · · is 1/2-1/4 = 1/4.

Only the first four terms of the series are shown. A white disk represents +1; a reddish disk represents −1. The units are grouped on top of each other as they occur within the terms of the series.

Let a = 1 − 2 + 3 − 4 + · · · be the original formal series. Let S be the shift operator on formal series,

Let T be the average between S and the identity operator:

Then given a series a, if it converges, then its sum is the same as the sum of the series

The Euler summation procedure has many descriptions, but for the present purposes it can be described as a repetition of the above "process". To be precise, the nth term of the Euler transformed series is

See eq. (20.3) of Korevaar, Jacob (2004) Tauberian Theory: A Century of Developments, Springer, pp. 326 ISBN 3-540-21058-X

To compute this transform in place, one pulls half of each term into the next term, then fixes the first term, then repeats.

The part of the diagram with the four green stripes indicates taking half of every term in the original series a and pulling it into the next term. Most of the units cancel, leaving the series

The first term of this series is fixed, leaving

The process repeated upon the remaining terms, leaving 1/2 − 1/4 + 0 + 0 + · · ·. Now two terms are fixed, and the remaining terms are all zero, so all further applications of T do not change the series, and they are not depicted. In the visual language, subsequent green stripes pull on nothingness.

The result is the Euler transformed series, 1/2 − 1/4 + 0 + 0 + · · ·. It is convergent, having only two nonzero terms, and its sum is 1/2 − 1/4. The diagram does not distinguish between the finite series and its sum. As a number, 1/2 − 1/4 = 1/4.

The above is done to illustrate how Euler summation works on the series. In practice, one exploits auxiliary quantities, and the computation is much easier; see for example Image:Pm1234-Euler1755.png. An extended description of Euler's procedure on 1 − 2 + 3 − 4 + · · ·, including reversing its alternation and taking iterated forward differences, is at w:1 − 2 + 3 − 4 + · · ·#Euler and Borel.
Fecha
Fuente User created
Autor User:Melchoir
Otras versiones PNG version

Licencia

Yo, titular de los derechos de autor de esta obra, la publico en los términos de las siguientes licencias:
GNU head Se autoriza la copia, distribución y modificación de este documento bajo los términos de la licencia de documentación libre GNU, versión 1.2 o cualquier otra que posteriormente publique la Fundación para el Software Libre; sin secciones invariables, textos de portada, ni textos de contraportada. Se incluye una copia de la dicha licencia en la sección titulada Licencia de Documentación Libre GNU.
w:es:Creative Commons
atribución compartir igual
Este archivo se encuentra bajo la licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.
Eres libre:
  • de compartir – de copiar, distribuir y transmitir el trabajo
  • de remezclar – de adaptar el trabajo
Bajo las siguientes condiciones:
  • atribución – Debes otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si realizaste algún cambio. Puedes hacerlo de cualquier manera razonable pero no de manera que sugiera que el licenciante te respalda a ti o al uso que hagas del trabajo.
  • compartir igual – En caso de mezclar, transformar o modificar este trabajo, deberás distribuir el trabajo resultante bajo la misma licencia o una compatible como el original.
Esta etiqueta de licencia fue agregada a este archivo como parte de la actualización de la licencia GFDL.
w:es:Creative Commons
atribución compartir igual
Este archivo se encuentra bajo la licencia Creative Commons de Atribución/Compartir-Igual 2.5 Genérica, 2.0 Genérica y 1.0 Genérica.
Eres libre:
  • de compartir – de copiar, distribuir y transmitir el trabajo
  • de remezclar – de adaptar el trabajo
Bajo las siguientes condiciones:
  • atribución – Debes otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si realizaste algún cambio. Puedes hacerlo de cualquier manera razonable pero no de manera que sugiera que el licenciante te respalda a ti o al uso que hagas del trabajo.
  • compartir igual – En caso de mezclar, transformar o modificar este trabajo, deberás distribuir el trabajo resultante bajo la misma licencia o una compatible como el original.
Puedes usar la licencia que prefieras.

Leyendas

Añade una explicación corta acerca de lo que representa este archivo

Elementos representados en este archivo

representa a

Historial del archivo

Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.

Fecha y horaMiniaturaDimensionesUsuarioComentario
actual12:43 1 ene 2008Miniatura de la versión del 12:43 1 ene 2008240 × 390 (26 kB)Papa NovemberRemoved unnecessary Adobe Illustrator metadata. May fix rendering problems. No copyright claimed for non-creative derivative work.
03:07 5 mar 2007Miniatura de la versión del 03:07 5 mar 2007240 × 390 (46 kB)Melchoirknock out border
01:35 5 mar 2007Miniatura de la versión del 01:35 5 mar 2007240 × 390 (46 kB)Melchoirtouch file
22:23 4 mar 2007Miniatura de la versión del 22:23 4 mar 2007240 × 390 (46 kB)MelchoirEuler summation of 1 − 2 + 3 − 4 + · · · to 1/2-1/4

La siguiente página usa este archivo:

Uso global del archivo