Distribución t no central

En Teoría de la probabilidad y Estadística, la distribución t no central generaliza la distribución t de Student mediante un parámetro de no centralidad. Así como en un contraste de hipótesis de igualdad de medias en una población normal, la distribución t de Student describe el estadístico de contraste cuando la hipótesis nula es cierta (igualdad de medias), la distribución t no central lo hace cuando la hipótesis nula es falsa; en consecuencia, es especialmente importante en el cálculo de la potencia estadística de un contraste. También se utiliza en la modelización robusta de datos.

Distribución t no central

Función de densidad de probabilidad
Parámetros ν > 0 grados de libertad
parámetro de no centralidad
Dominio
Función de densidad (pdf) Ver texto
Función de distribución (cdf) Ver texto
Media si
Varianza , si

Definición

editar

Sea   una variable aleatoria normal estándar   y   una variable aleatoria χ² con   grados de libertad que es independiente de  . Se dice[1]​ que la variable aleatoria

 

tiene una distribución t no central con   grados de libertad y parámetro de no centralidad   ; se escribe  . Cuando   se obtiene una distribución   de Student ordinaria  . Debe tenerse en cuenta que el parámetro de no centralidad puede ser negativo.

Comentario sobre los grados de libertad no enteros. El caso habitual de esta distribución es cuando el número de grados de libertad   es un número natural, pero tanto desde el punto de vista de las aplicaciones como de la teoría, es conveniente que esta distribución pueda tener cualquier número estrictamente positivo de grados de libertad,  . Esto es correcto gracias a que una distribución χ² cuadrado está bien definida para  .

Función de densidad

editar

La función de densidad de la distribución t no central no tiene una expresión sencilla y veremos diversas formulaciones que aparecen en la literatura. Sea  .


Expresión integral [2]  Es interesante observar que cuando   es un número natural, esta fórmula puede escribirse en términos de la función   [3]  donde   Sobre la función   consultar, por ejemplo, Jeffreys and Jeffreys. [4]



Expresión en serie. [5] 

Expresión mediante funciones especiales.

Utilizando la función cilíndrica parabólica  [6]​(ver la versión digital [7]​),

tenemos que [8]  Mediante la función hipergeométrica confluente o función de Kummer   , también denotada por   [9]​,  donde  

Expresión en términos de la función de distribución El software estadístico R y otros programas estadísticos utilizan la siguiente expresión para calcular la función de densidad [1]:

 donde   es la función de distribución de la distribución   no central con   grados de libertad y parámetro de no centralidad   (véase el siguiente apartado).

Demostraciones
Fórmula (1)

Escribimos  donde  ,  , con   (distribución χ con   grados de libertad),   y   independientes. Utilizando que si una variable aleatoria   tiene función de densidad  , entonces la variable aleatoria  , con  , tiene función de densidad  , tenemos que la función de densidad de   es  Dada la independencia entre   y  , la función de densidad conjunta del vector   es  Consideremos la transformación   específicamente  donde  . Esta función es biyectiva de clase  . La función inversa es  con  . El valor absoluto del determinante jacobiano de   es  . Por tanto la densidad de   (después de arreglar la expresión) es  Entonces, para  ,  Haciendo el cambio  , llegamos a la expresión (1)  

Expresión en serie. Volvamos a la expresión (*), que equivale a  y descompongamos   en serie de potencias en la variable  . A continuación se razona que puede intercambiarse la integral con el sumatorio y se llega a  Ahora se calcula cada integral mediante el cambio de variable   , con lo que obtenemos (2).

Expresiones en términos de funciones especiales. La fórmula (3) se deduce de la fórmula (1) utilizando la representación integral de la función cilíndrica parabólica   [10]​: para  ,   La fórmula (4) se obtiene a partir de (3) mediante la relación entre las funciones cilíndricas parabólicas y las funciones hipergeométricas confluentes [11][12][13] Expresión en términos de la función de distribución (5): véase el siguiente apartado..

Función de distribución

editar

La función de distribución de la distribución t no central con   grados de libertad y parámetro de no centralidad   se puede expresar como [14][15] donde  

  es la función beta incompleta regularizada,
 

y   es la función de distribución de la distribución normal estándar. Nótese que   sólo depende de   y por tanto en (6), para   es indistinto poner   o  .

Demostración
Esta fórmula se deduce a partir de la expresión en serie de la función de densidad (2). Empezaremos demostrando una fórmula intermedia que nos será de utilidad más adelante. Argumentando que la convergencia de la serie en (2) es uniforme en cualquier intervalo finito [16]​ , podemos integrar término a cabo; concretamente, para  , se obtiene  Ahora se utiliza la fórmula de duplicación de la función gamma:  y se obtiene  

Por otro lado,  Así,  Designemos la expresión de la derecha por   .

Para   , tenemos donde hemos utilizado que   es simétrica respecto al 0 y que la función   que hemos calculado antes sólo depende de   .

Finalmente, para obtener la expresión (7), el sumatorio de (8) se separa en dos, uno para los índices   pares y el otro para los impares.

Demostración de la fórmula de la densidad en términos de la función de distribución
La demostración consiste en calcular la diferencia   utilizando la fórmula (8). Fijemos  ; el punto clave de la prueba es que en la expresión (8) de   y de  , para cada término   del sumatorio, el subíndice de la función gamma incompleta es el mismo . Concretamente, si definimos la función entonces,  A a partir de esa observación se aplica la fórmula [17] donde   es la función Beta, en cada una de las diferencias entre los sumandos del mismo índice   (ambas series son convergentes y las podemos restar término a término), de donde  

Aplicando la fórmula de duplicación de la función beta y simplificando, juntando todos los términos del sumatorio, se obtiene   que multiplica la expresión de la derecha de (2), con lo que se demuestra (5 ) cuando  .

Para   , por los cálculos efectuados, tenemos que donde   designa la función de densidad de la distribución   con   grados de libertad y parámetro de no centralidad  . Pero como se comprueba a partir de (1) o (2),  

Momentos

editar

El momento de orden   de una distribución   no central es [18]

 
donde   designa la derivada de orden k -ésimo de la función   .

En particular, la media y la varianza son:  

Demostración
Debido a la independencia entre el numerador i el denominador en la definición de la distribución   no central, a que una variable normal tiene momentos de todos los órdenes y que  , el cálculo de los momentos se reduce a   pudiendo ser esta expresión finita o  .

Por un lado, para la distribución normal estándar   tenemos la siguiente expresión:   Por otra parte, debido a que  , podemos calcular la siguiente integral para cualquier número natural     Hacemos el cambio de variables  , y la integral de la derecha da    , y   en caso contrario.

Aplicación al cálculo de la potencia del contraste t de Student

editar

Véase Johnson and Welch [19]​. Sea   una muestra de una población normal  , es decir, las variables aleatorias   son independientes y todas tienen distribución  . Fijado un número  . Queremos contrastar   En el contraste de Student, el estadístico de contraste es   donde   és la media muestral y   es la varianza muestral (modificada):   Bajo la hipótesis nula  ,   (véase la distribución   de Student). Fijado un nivel de significación   (habitualmente   o  ), para determinar la región crítica calculamos el valor   tal que donde   En este contexto, rechazamos   si  . Dado un valor   (por tanto, de la hipótesis alternativa), podemos calcular la potencia del test, es decir, la probabilidad de rechazar la hipótesis nula cuando es falsa, en este punto, de la siguiente manera: escribimos En la expresión de la derecha,

  1. Si suponemos  , entonces   .
  2. Tenemos que  y por tanto   es una variable aleatoria con una distribución   (véase la distribución χ²) dividida por sus grados de libertad.
  3. Las variables aleatorias de los puntos 1 y 2 son independientes (véase la distribución χ²) .

En consecuencia, si  , tenemos que  . Por tanto, la potencia del test en el punto   será  


Uso en intervalos de tolerancia

editar

Los intervalos de tolerancia normales unilaterales tienen una solución exacta en términos de la media muestral y la varianza muestral basada en la distribución t no central [20]​. Esto permite calcular un intervalo estadístico dentro del cual, con cierto nivel de confianza, se encuentra una proporción especificada de la población.

Referencias

editar
  1. Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1995). Continuous univariate distributions. 2 (2. ed edición). Wiley. p. 508. ISBN 978-0-471-58494-0. 
  2. Scharf, Louis. Statistical signal processing: detección, estimación, y time series 0 (transferred to digital print on demand 2002; reprinted with corrections July, 1991 edición). p. 177. 
  3. HOGBEN, D.; PINKHAM, R. S.; WILK, M. B. (1961). «The moments of the non-central t-distribution». Biometrika 48 (3-4): 465-468. ISSN 0006-3444. doi:10.1093/biomet/48.3-4.465. Consultado el 18 de enero de 2024. 
  4. Jeffreys, Harold; Jeffreys, Bertha (2001). «Section 23.081». Methods of mathematical physics. Cambridge mathematical library (3. ed.; 1. paperback ed., reprinted 2001 edición). Cambridge Univ. Press. ISBN 978-0-521-66402-8. 
  5. Craig, Cecil C. (1941-06). «Note on the Distribution of Non-Central $t$ with an Application». The Annals of Mathematical Statistics 12 (2): 224-228. ISSN 0003-4851. doi:10.1214/aoms/1177731752. Consultado el 18 de enero de 2024. 
  6. National Institute of Standards and Technology (2010). Olver, Frank W. J., ed. NIST handbook of mathematical functions. Cambridge University Press. ISBN 978-0-521-14063-8. 
  7. «12.5.1. NIST Handbook of Mathematical Functions. DLMF: §12.5 Integral Representations ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions». dlmf.nist.gov. Consultado el 18 de enero de 2024. 
  8. Gil, Amparo; Segura, Javier; Temme, Nico M. (2023-10). «New asymptotic representations of the noncentral t ‐distribution». Studies in Applied Mathematics (en inglés) 151 (3): 857-882. Fórmula 2.12. ISSN 0022-2526. doi:10.1111/sapm.12609. Consultado el 18 de enero de 2024. 
  9. «NIST Handbook of Mathematical Functions. DLMF: §13.1 Special Notation ‣ Notation ‣ Chapter 13 Confluent Hypergeometric Functions». dlmf.nist.gov. Consultado el 18 de enero de 2024. 
  10. «12.5.1. NIST Handbook of Mathematical Functions. DLMF: §12.5 Integral Representations ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions». dlmf.nist.gov. Consultado el 18 de enero de 2024. 
  11. «12.4.1. NIST handbook of mathematical functions. DLMF: §12.4 Power-Series Expansions ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions». dlmf.nist.gov. Consultado el 18 de enero de 2024. 
  12. «12.7.12, 12.7.13. NIST handbook of mathematical functions. DLMF: §12.7 Relations to Other Functions ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions». dlmf.nist.gov. Consultado el 18 de enero de 2024. 
  13. «12.2.6, 12.2.7. NIST handbook of mathematical functions. DLMF: §12.2 Differential Equations ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions». dlmf.nist.gov. Consultado el 18 de enero de 2024. 
  14. Lenth, Russell V. (1989). «Algorithm AS 243: Cumulative Distribution Function of the Non-Central t Distribution». Journal of the Royal Statistical Society. Series C (Applied Statistics) 38 (1): 185-189. ISSN 0035-9254. doi:10.2307/2347693. Consultado el 19 de enero de 2024. 
  15. Gil, Amparo; Segura, Javier; Temme, Nico M. (2023-10). «New asymptotic representations of the noncentral t ‐distribution». Studies in Applied Mathematics (en inglés) 151 (3): 857-882, fórmulas (1.1) y (1.2). ISSN 0022-2526. doi:10.1111/sapm.12609. Consultado el 19 de enero de 2024. 
  16. Craig, Cecil C. (1941). «Note on the Distribution of Non-Central t with an Application». The Annals of Mathematical Statistics 12 (2): 224-228. ISSN 0003-4851. Consultado el 19 de enero de 2024. 
  17. Temme, Nico M. (1996). Special functions: an introduction to the classical functions of mathematical physics. A Wiley interscience publication. Wiley. p. 289, fórmula 11.3. ISBN 978-0-471-11313-3. 
  18. Hogben, D; Pinkham, RS; Wilk, MB (1961). «The momentos de la no-central t-distribution». Biometrika 48 (3–4): 465-468. JSTOR 2332772. doi:10.1093/biomet/48.3-4.465. hdl:2027/coo.31924001119068. 
  19. Johnson, N. L.; Welch, B. L. (1940). «Applications of the Non-Central t-Distribution». Biometrika 31 (3/4): 362-389. ISSN 0006-3444. doi:10.2307/2332616. Consultado el 19 de enero de 2024. 
  20. Owen, D. B. (1968). «A Survey of Properties and Applications of the Noncentral t-Distribution». Technometrics 10 (3): 445-478. ISSN 0040-1706. doi:10.2307/1267101. Consultado el 19 de enero de 2024.