Teorema de la función implícita
En análisis matemático, el teorema de la función implícita establece condiciones suficientes, bajo las cuales una ecuación o conjunto de ecuaciones de varias variables permite definir a una de ellas o varias de ellas como función de las demás.
Una función y(x) está dada de forma implícita cuando está definida de la forma , en vez de estarlo en su forma explícita, , más habitual. Dada la ecuación (lo que se conoce como función implícita), bajo ciertas exigencias sobre la derivada de F podríamos, al menos localmente, despejar .
Por ejemplo, puede probarse que la siguiente ecuación define una función implícita en cierta región o un abierto de entre las variables x e y:
Es decir, el teorema establece que existe una función que sustituida en la ecuación anterior, la convierte en una identidad matemática.
Ejemplos
editarAntes de enunciar el teorema, considere la función
Si consideramos la ecuación , entonces la función admite como preimágenes todos los vectores que resuelven esta ecuación: . Por esto, no es posible despejar globalmente una variable en términos de la otra y por lo mismo no es posible determinar cómo cambia una variable en función de la otra, al menos no globalmente pero sí en un entorno de . (El único vector factible en la preimagen es ).
Otro ejemplo más complejo sería el siguiente:
Puede verse que si para valores de cercanos al punto existen dos funciones e tales que se cumple automáticamente para puntos de un entorno abierto:
Enunciado general
editarEl enunciado general es como sigue:
- Teorema (de la Función Implícita)
Sean una función continuamente diferenciable y cualquier vector tal que . Considere y defina la matriz jacobiana y sobre esta considere que la submatriz que define es invertible. Entonces existen los conjuntos abiertos y con y tales que para cada existe un único tal que y lo que define una función que es continuamente diferenciable y que además verifica
además
donde .
Demostración:
Definimos de modo que , de esta manera .
Intentaremos ver que sea inversible.
Claramente es continuamente diferenciable, pues lo es, asi que veamos que es invertible, es decír, que .
Que vista por bloques equivale a tener:
Donde claramente es invertible, pues por hipotesis es invertible.
⇒ entornos abiertos en tal que , , en donde tiene inversa continuamente diferenciable.
Sean y las proyecciones de en y respectivamente, de esta manera;
;
Llamemos tal que
De topología aceptamos que si abierto tal que .
Achicamos los entornos y a , de modo que .
Definimos así , de modo que en
Luego
Aplicando en ambos miembros; ; por definición de ; , en ,
Luego como es continuamente diferenciable, por ser composición de funciones continuamente diferenciables, derivando y por regla de la cadena, podemos ver que;
Y rápidamente comprobar que;
Diferenciación de funciones dadas de forma implícita
editarPara poder derivar una función implícita se usa la Regla de la cadena, en el caso de la variable independiente no hay problema ya que se deriva directamente, para la variable dependiente se considera como una función que a su vez está en función de la variable independiente:
Dada una función de manera implícita en la ecuación , si queremos calcular la derivada de y respecto de x, , debemos considerar a como una función en términos de la variable independiente x. Si derivamos con respecto a x la ecuación queda, en virtud de la Regla de la Cadena:
Es decir que la derivada buscada es .
Aplicación práctica
editarObtener la derivada de:
El término Se puede considerar que son dos funciones, y por lo que se derivara como un producto:
El término se deriva como:
El término se deriva de forma normal como:
El valor constante 12, que no depende ni de x ni de y, tiene por derivada 0, pues corresponde a un valor constante.
Para el término se puede considerar como un producto y se deriva como:
Al unir todos los términos se obtiene:
Ordenando
Factorizando respecto a ( ) los valores son:
Finalmente despejando se obtiene la derivada de la función implícita:
Véase también
editarReferencias
editarPara una demostración con detalles véase:
- Alejandro Jofré, Patricio Felmer, Paul Bosch,g Matías Bulnes, Arturo Prat, Luis Rademacher, José Zamora, y Mauricio Vargas. "Cálculo en Varias Variables - Apunte Completo" (2011). Disponible en: http://docencia.dim.uchile.cl/calculo_vv/material/apunte_cvv_felmer-jofre.pdf (página 151).
Bibliografía
editarPara una colección de ejemplos:
- Bombal, Marin & Vera: Problemas de Análisis matemático: Cálculo Diferencial, 1988, ed. AC, ISBN 84-7288-101-6.