Función homogénea

En matemáticas, una función homogénea[1]​ es una función tal que, si todos sus argumentos se multiplican por un escalar, entonces su valor se multiplica por alguna potencia de este escalar, llamado grado de homogeneidad, o simplemente el grado; es decir, si k es un número entero, una función f de variables n es homogénea de grado k si

para cada y

Expresado de otra manera, es una función que presenta un interesante comportamiento multiplicativo de escala: si todos los argumentos se multiplican por un factor constante, entonces el valor de la función resulta ser un cierto número de veces el factor multiplicativo elevado a una potencia. Dicha potencia es el grado de la función homogénea (véase Definición formal).

Definición formal

editar

Supongamos una función cuya definición es   entre dos espacios vectoriales sobre el mismo cuerpo  . Entonces se dice que   es homogénea de grado k si:

 

Ejemplos

editar

Las funciones lineales

editar

Cualquier función lineal   es homogénea de grado 1, puesto que por definición se tiene:

 

para todo   y  . Del mismo modo, cualquier función multilineal   es homogénea de grado n, por definición.

 

para todo   y  . Se sigue que la n-ésima derivada de Fréchet de una función   entre dos espacios de Banach   y   es homogénea de grado  .

Polinomios homogéneos

editar

Los monomios de   variables reales definen funciones homogéneas . Por ejemplo,

 

es homogénea de grado 10 puesto que:

 

Un polinomio homogéneo es un polinomio tal que todos sus términos tienen el mismo grado. Por ejemplo,

 

es un polinomio homogéneo de grado 5.

Propiedades

editar

Supongamos que una función   es infinitamente diferenciable. Entonces f es homogénea de grado k si y sólo si:

 .

  • Teorema: Sea   es diferenciable y homogénea de grado k. Entonces sus derivadas parciales de primer orden   son funciones homogéneas de grado k-1. es decir

 

Este resultado se prueba de la misma manera que el teorema de Euler.

Demostración
Sea   y la función   homogénea.

Por homogeneidad de la función  se sabe que

 

Se define   como  . Reemplazando la   en la expresión anterior nos queda:

 

Se deriva ambos lados de la igualdad con respecto a  

 

por regla de la cadena la expresión se vuelve:

 

Sustituyendo nuevamente  :

 

 

y finalmente da el resultado que se quiere obtener:

 

Aplicación a las EDOs

editar

La substitución   convierte la ecuación diferencial ordinaria (EDO)

 

Donde   y   son funciones homogéneas del mismo grado, en la ecuación diferencial separable:

 

Referencias

editar
  1. Richard Courant, Fritz John (1999). Introduction to Calculus and Analysis II/1. Springer Science & Business Media. pp. 119 de 556. ISBN 9783540665694. Consultado el 23 de septiembre de 2023. 

Bibliografía

editar
  • Blatter, Christian (1979). «20. Mehrdimensionale Differentialrechnung, Aufgaben, 1.». Analysis II (2nd ed.) (en alemán). Springer Verlag. p. 188. ISBN 3-540-09484-9. 

Enlaces externos

editar